Acknowledgment. We thank Dr. D. M. Cox of Exxon Research for helpful conversations and for relating preliminary experimental results on the CID of $\mathrm{Mn}_{2}{ }^{+}$. Financial support was provided in part by Research Corp. P.B.A. gratefully acknowledges a Dreyfus Fellowship.

Electron-Transfer Reactions and Luminescent Quantum Yield of the Triplet Excited State of Tetrakis $\left[\mu\right.$-diphosphito(2-)-P, $\left.P^{\prime}\right]$ diplatinate(II)

William B. Heuer, Mark D. Totten, Gary S. Rodman, Eric J. Hebert, Henry J. Tracy, and Jeffrey K. Nagle*

Department of Chemistry, Bowdoin College Brunswick, Maine 04011
Received September 28, 1983
In the short period following the isolation ${ }^{1}$ and crystal structure determination ${ }^{23}$ of $\left.\mathrm{Pt}_{2}\left(\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{H}_{2}\right)_{4}^{4-}\left(\mathrm{Pt}_{2} \text { (pop) }\right)_{4}^{4}\right)$, many studies have focused on its intense luminescence ${ }^{4-11}$ and the related possibility of metal-metal bonding. $5,6,8,11-15$ Although much is now known concerning the detailed nature of the lowest luminescent excited state, only a brief report ${ }^{6}$ has appeared describing its photoredox properties. Here we report the results of excited-state electrontransfer quenching studies of $\mathrm{Pt}_{2}(\mathrm{pop})_{4}{ }^{4-}$ in methanol and also its luminescent quantum yield in aqueous solution. It is demonstrated that the triplet excited state of $\mathrm{Pt}_{2}(\mathrm{pop})_{4}{ }^{4}$ is reduced to Pt_{2} (pop) $)^{5-}$ by a series of aromatic amine quenchers and shows great promise as a photoredox catalyst.
Quenching studies were performed by standard techniques ${ }^{16}$ and analyzed using the Stern-Volmer equation ${ }^{17}$ to yield values of $k_{\mathbf{q}}$, the second-order quenching rate constant. These values are presented in Table I. To correct for diffusion and encounter effects, ${ }^{18}$ values of k_{q} were converted to first-order electron-transfer rate constants k_{et} by $k_{\mathrm{et}}=\left[K\left(k_{\mathrm{q}}{ }^{-1}-k_{\mathrm{d}}{ }^{-1}\right)\right]^{-1}$, where k_{d} is the diffusion rate constant for formation of the encounter complex with equilibrium constant K. ${ }^{18}$

[^0]Table I. Rate Constants for Quenching of $\mathrm{Pt}_{2}(\mathrm{pop})_{4}{ }^{4-*}$ by Aromatic Amines in Methanol Solution at $\sim 25^{\circ} \mathrm{C}$

quencher	$E_{1 / 2}$, V^{a}	$k_{\mathrm{q}}, \mathrm{dm}^{3}$ $\mathrm{~mol}^{-1} \mathrm{~s}^{-1} b$	$k_{\mathrm{et}}, \mathrm{s}^{-1} c$
$N, N, N^{\prime}, N^{\prime}$-tetramethyl-	0.11^{d}	1.2×10^{10}	6.8×10^{10}
1,4 -benzenediamine, 1	0.36^{e}	$3.0 \times 10^{9}{ }^{i}$	2.5×10^{9}
$N, N, N^{\prime}, N^{\prime}$-tetramethyl-			
[1,1'-biphenyl]-4,4,-diamine, 2			
$N, N, 4$-trimethylbenzenamine, 3	0.71^{f}	3.9×10^{7}	3.2×10^{7}
N, N-dimethylbenzenamine, 4	0.78^{g}	1.2×10^{7}	1.0×10^{7}
N, N-diphenylbenzenamine, 5	0.92^{h}	1.5×10^{6}	1.0×10^{6}

${ }^{a}$ Reduction potentials vs. SCE from cyclic voltammetric measurements in room-temperature $\mathrm{CH}_{3} \mathrm{CN}$ solutions containing $0.1 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ tetraalkylammonium perchlorate. Values in $\mathrm{CH}_{3} \mathrm{OH}$ are expected to be the same within 0.01 V (Iwa, P.; Steiner, U. E.; Vogelmann, E.; Kramer, H. E. A. J. Phys. Chem. 1982, 86, 1277-1285. Horner, L.; Nickel, H. Chem. Ber. 1956, 1681-1690). ${ }^{b}$ Second-order quenching rate constants obtained from slopes of Stern-Volmer plots by using $\tau_{0}=7.10 \times 10^{-6} \mathrm{~s} .{ }^{17}$ ${ }^{c}$ First-order electron-transfer rate constant for reaction within the encounter pair. See text for explanation. ${ }^{d}$ Luong, J. C.; Faltynek, R. A.; Wrighton, M. S. J. Am. Chem. Soc. 1980, 102, 7892-7900. Values of $0.10 \mathrm{~V}^{e}$ and 0.12 have also been reported. ${ }^{e}$ Nocera, D. G.; Gray, H. B. J. Am. Chem. Soc. 1981, 103 , 7349-7350. A value of 0.43 V (ref 16 and: Zweig, A.; Maurer, A. H.; Roberts, B. G. J. Org. Chem. 1967, 32, 1322-1329) has also been reported. f Reference 16 . A value of $0.70 \mathrm{~V}^{d, e}$ has also been reported. ${ }^{g}$ Hino, T.; Akazawa, H.; Masuhara, H.; Mataga, N. J. Phys. Chem. 1976, 80, 33-37. Luong, J. C.; Nadjo, L.; Wrighton, M. S. J. Am. Chem. Soc. 1978, 100, 57905795. Values of 0.74 V (Jones, P. R.; Drews, M. J.; Johnson, J. K.; Wong, P. S. Ibid. 1972, 94, 4595-4599), 0.79 V (Iwa, P.; Steiner, U. E.; Vogelmann, E.; Kramer, H. E. A. J. Phys. Chem. $1982,86,1277-1285), 0.80 \mathrm{~V},{ }^{16}$ and $0.81 \mathrm{~V}^{e}$ have also been reported. The large discrepancy in these values can be partly attributed to the irreversibility of the oxidation using cyclic voltammetry. ${ }^{16}{ }^{h}$ Debrodt, H.; Heusler, K. E. Z. Phys. Chem. (Weisbaden) 1981, 125, 35-48. Corrected for a reference electrode difference of 0.32 V (Larson, R. C.; Iwamoto, R. T.; Adams, R. N. Anal. Chim. Acta. 1961, 25, 371-374); Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy, D. W.; Adams, R. N. J. Am. Chem. Soc. 1966, 88, 3498-3503. Values of 0.95 V (Park, S. M.; Bard, A. J. Ibid. 1975, 97, 2978-2985), 1.00 V (Creason, S. C.; Wheeler, J.; Nelson, R. F. J. Org. Chem. 1972, 37, 4440-4446), and 1.06^{16} have also been reported.
${ }^{i}$ For solubility reasons, 2 was first dissolved in a small amount of acetone and then added to methanol.

Figure 1. Plot of $(R T / F) \ln k_{\text {et }}$ vs. $E_{1 / 2}$ for the quenching of Pt_{2} (pop) ${ }_{4}{ }^{4 * *}$ by a series of aromatic amines in $\mathrm{CH}_{3} \mathrm{OH}$ at $\simeq 25^{\circ} \mathrm{C}$. The solid line corresponds to the best fit of the data to eq 1 assuming $\nu_{\mathrm{et}}=10^{11} \mathrm{~s}^{-1}$. See ref 20 for details.

The systematic variation of k_{et} with quencher $E_{1 / 2}$ values and the high and nearly constant quencher triplet energies ${ }^{19}$ supports

[^1]the hypothesis of electron-transfer quenching. Observation of separated redox products by flash photolysis would be unlikely in view of the Coulombic forces involved. A plot of $(R T / F) \ln$ $k_{\text {et }}$ vs. amine $E_{1 / 2}$ values is shown in Figure 1 .

A value of $1.1 \pm 0.2 \mathrm{~V}$ for $E^{\circ}\left(\mathrm{Pt}_{2}(\mathrm{pop})_{4}{ }^{4-^{*} / 5-}\right)$ is obtained by fitting the data in Table I to the equation

$$
\begin{equation*}
(R T / F) \ln k_{\mathrm{et}}=\left((R T / F) \ln \nu_{\mathrm{et}}\right)-\left(\lambda(1+\Delta G / \lambda)^{2} / 4\right) \tag{1}
\end{equation*}
$$

where $\Delta G=E^{\circ}\left(\mathrm{NR}_{3}{ }^{+/ 0}\right)-E^{\circ \prime}\left(\mathrm{Pt}_{2}(\mathrm{pop})_{4}{ }^{4-* / 5-}\right)+w_{\mathrm{p}}-w_{\mathrm{r}}\left(w_{\mathrm{p}}\right.$ and w_{r} are Coulombic work terms ${ }^{16}$) and ν_{et} is the frequency and λ the reorganization energy for electron transfer. ${ }^{20}$ This value is larger than the corresponding values of 0.8 V for $\mathrm{Ru}(\mathrm{bpy})_{3}{ }^{2+4 /+16}$ and $\simeq 0.5 \mathrm{~V}$ for $\mathrm{Rh}_{2}(\mathrm{br})_{4}{ }^{2+\bullet /+}$ ($\mathrm{br}=1,3$-diisocyanopropane). ${ }^{21}$ The reason for the lower k_{q} values for quenchers 2-4 reported here compared to those for $\mathrm{Ru}(\mathrm{bpy})_{3}{ }^{2+*}{ }^{16}$ is a result of the much larger value of λ for $\mathrm{Pt}_{2}(\mathrm{pop})_{4}{ }^{4{ }^{* *}}(1.4 \pm 0.2 \mathrm{~V})$ compared to $\mathrm{Ru}(\mathrm{bpy})_{3}{ }^{2+^{*}}(0.5 \mathrm{~V}){ }^{16}$ Since calculated values for the outer-sphere contribution to λ differ by less than 0.1 V , most of this difference can be ascribed to a larger inner-sphere reorganization energy for $\mathrm{Pt}_{2}(\text { pop })_{4}{ }^{4^{-*}}$. This is to be expected given the differing natures of the excited-state distortions for $\mathrm{Ru}(\text { bpy })_{3}{ }^{2+22}$ and Pt_{2} (pop) $)_{4}{ }^{4-11}$

This distortion is also expected to influence the $\mathrm{Pt}_{2}(\mathrm{pop})_{4}{ }^{4-* / 5-}$ electron-transfer self-exchange rate. A maximum value of $2 \times$ $10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ is calculated for this rate constant using the data in Table I. ${ }^{23}$

An energy level diagram summarizing the excited-state redox thermodynamics in terms of $E^{\circ \prime}$ values (V vs. SCE) can now be constructed:

where $E^{\circ \prime}$ for Pt_{2} (pop) $)_{4}^{3-/ 44^{*}}$ is from ref $9\left(\mathrm{H}_{2} \mathrm{O}\right)$, and the $E^{0 \prime}$ values for Pt_{2} (pop) $4_{4}^{4-/ 5-}$ and Pt_{2} (pop) $4^{3-/ 4-}$ are calculated from the excited-state reduction potentials and $E_{0-\mathrm{O}}=2.5 \mathrm{eV}$. $, 8,9,24$ Thus, in comparison to $\mathrm{Ru}(\mathrm{bpy})_{3}{ }^{2+*}, \mathrm{Pt}_{2}(\text { pop })_{4}{ }^{4{ }^{4 *}}$ is thermodynamically both a better oxidant and reductant. This advantage is partly mitigated by the large excited-state distortion for $\mathrm{Pt}_{2^{-}}$ (pop) ${ }^{4-}$, manifested in a large energy of reorganization.

Contrary to a previous report, ${ }^{1}$ we have found Pt_{2} (pop) $)_{4}{ }^{4-}$ to be stable in acid ($1.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{HClO}_{4}$), although decomposition to Pt_{2} (pop) $)_{4} \mathrm{Cl}_{2}^{4-13,15}$ in $1.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{HCl}$ was observed. Thermal decomposition is rapid in basic media ($\mathrm{pH}>10$).

The quantum yield for the triplet phosphorescent state of Pt_{2} (pop) ${ }_{4}{ }^{4-}$ is determined to be 0.52 ± 0.07 (deoxygenated $\mathrm{H}_{2} \mathrm{O}$,

[^2]$\left.25 \pm 3^{\circ} \mathrm{C}\right) . .^{25}$ This, coupled with the measured lifetime of 6.2 $\mu \mathrm{s}$ (deoxygenated $\mathrm{H}_{2} \mathrm{O}, 24^{\circ} \mathrm{C}$), ${ }^{4}$ enables values of $8.4 \times 10^{4} \mathrm{~s}^{-1}$ for the radiative rate constant and $7.7 \times 10^{4} \mathrm{~s}^{-1}$ for the nonradiative rate constant to be calculated. The long lifetime and large quantum yield both contribute to efficient excited-state reactivity.

Acknowledgment. We thank Dr. George H. Allen of the University of North Carolina at Chapel Hill for the laser lifetime measurement and Professor Allen J. Bard and Dr. Joon Kim for providing us with preliminary electrochemical results. This work was supported by the donors of the Petroleum Research Fund, administered by the American Chemical Society, and by a Du Pont Corp. grant to Bowdoin College, Fund 65411-5026. A generous loan of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ by the Johnson-Matthey Company is also gratefully acknowledged.

Registry No. 1, 100-22-1; 2, 366-29-0; 3, 99-97-8; 4, 121-69-7; 5, 603-34-9; Pt_{2} (pop) ${ }_{4}{ }^{4}, 80011$-25-2.
(25) The quantum yield was determined relative to quinine sulfate in 1.0 $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{H}_{2} \mathrm{SO}_{4}$, for which $\Phi_{\mathrm{em}}=0.546$ (Demas, J. N.; Crosby, G. A. J. Phys. Chem. 1971, 75, 991-1024). Emission spectra obtained with a Per-kin-Elmer Model 654-40 fluorescence spectrophotometer were corrected for instrument response and converted to wavenumbers prior to integration (Morris, J. V.; Mahaney, M. A.; Huber, J. R. Ibid. 1976, 80, 969-974). The value reported represents the average of four determinations.

Synthesis and Structure of the First 10-P-3 Species

Scott Anthony Culley and Anthony J. Arduengo III*
Roger Adams Laboratory, Department of Chemistry University of Illinois
Urbana, Illinois 61801
Received October 28, 1983
We report the synthesis and structure determination of the first 10-P-3 species, 5-aza-2,8-dioxa-3,7-di-tert-butyl-1-phosphabicy-clo[3.3.0]octa-3,6-diene (ADPO). ${ }^{1}$ The T-shaped phosphorus

ADPO

system of ADPO is the first member of a previously unknown class of compounds, a phosphorandiide. ${ }^{2}$ ADPO can also be regarded as a phosphorus analog of the trithiapentalenes (10-S-3).

The synthesis of a compound that is free to choose between a 10 - or 8 -electron bonding scheme, without change in the ligation of the central atom, is of particular interest in the study of hypervalent bonding systems. For structures 1 and 2 the choice is clearly indicated by the geometry assumed by the molecule.
(1) The N-X-L system has been previously described (Perkins, C. W.; Martin, J. C.; Arduengo, A. J.; Lau, W.; Alegria, A.; and Kochi, J. K. J. Am. Chem. Soc. 1980, 102, 7753). In the present case the N-X-L identification is necessary to distinguish between the two possible structures for the ADPO system. Care must be taken to name the most important resonance structure that is free from multiple bonds at the center being described. It should also be noted that ClF_{3} assumes the same T -shaped geometry of $\mathbf{1}$ and contains the $10-\mathrm{Cl}-3$ bonding system.
(2) The name phosphorandiide is suggested by the nomenclature previously used by Granoth and Martin: Granoth, I.; Martin, J. C. J. Am. Chem. Soc. 1978, $100,7434$.

[^0]: (1) Sperline, R. P.; Dickson, M. K.; Roundhill, D. M. J. Chem. Soc., Chem. Commun. 1977, 62-63.
 (2) Filomena Dos Remedios Pinto, M. A.; Sadler, P. J.; Neidle, S.; Sanderson, M. R.; Subbiah, A.; Kuroda, R. J. Chem. Soc., Chem. Commun. 1980, 13-15.
 (3) Marsh, R. E.; Herbstein, F. H. Acta Crystallogr., Sect. B 1983, B39, 280-287.
 (4) Cox, A.; Kemp, T. J.; Reed, W. J.; Traverso, O., results reported in: Kemp, T. J. Progr. React. Kinet. 1980, 10, 301-398.
 (5) Fordyce, W. A.; Brummer, J. G.; Crosby, G. A. J. Am. Chem. Soc. 1981, 103, $7061-7064$.
 (6) Che, C.-M.; Butler, L. G.; Gray, H. B. J. Am. Chem. Soc. 1981, 103, 7796-7797.
 (7) Dickson, M. K.; Pettee, S. K.; Roundhill, D. M. Anal. Chem. 1981, 53, 2159-2160.
 (8) Rice, S. F.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 4571-4575.
 (9) Nocera, D. G.; Maverick, A. W.; Winkler, J. R.; Che, C.-M.; Gray, H. B. ACS Symp. Ser. 1983, No. 211, 21-33.
 (10) Markert, J. T.; Clements, D. P.; Corson, M. R.; Nagle, J. K. Chem. Phys. Lett. 1983, 97, 175-179.
 (11) Che, C.-M.; Butler, L. G.; Gray, H. B.; Crooks, R. M.; Woodruff, W. H. J. Am. Chem. Soc. 1983, 105, 5492-5494.
 (12) Stein, P. In "Raman Spectroscopy; Linear and Nonlinear"; Lascombe, J., Huong, P. V., Eds.; Wiley Heyden: New York, 1982; pp 651-652.
 (13) Che, C.-M.; Schaefer, W. P.; Gray, H. B.; Dickson, M. K.; Stein, P.
 B.; Roundhill, D. M. J. Am. Chem. Soc. 1982, 104, 4253-4255.
 (14) Stein, P.; Dickson, M. K.; Roundhill, D. M. J. Am. Chem. Soc. 1983, 105, 3489-3494.
 (15) Che, C.-M.; Herbstein, F. H.; Schaefer, W. P.; Marsh, R. E.; Gray, H. B. J. Am. Chem. Soc. 1983, 105, 4604-4607.
 (16) Bock, C. R.; Connor, J. A.; Gutierrez, A. R.; Meyer, T. J.; Whitten, D. G.; Sullivan, B. P.; Nagle, J. K. J. Am. Chem. Soc. 1979, 101, 4815-4824. (17) Blazani, V.; Moggi, L.; Manfrin, M. F.; Bolletta, F.; Laurance, G. S. Coord. Chem. Rev. 1975, 15, 321-433. A value of 7.10μ s for the luminescent lifetime (deaerated $\mathrm{CH}_{3} \mathrm{OH}, 25^{\circ} \mathrm{C}$) was determined from a pulsedlaser experiment.
 (18) Noyes, R. M. Prog. React. Kinet. 1961, 1, 129-160. Values of k_{d} were calculated from the Smoluchowski equation combined with the Stokes-Einstein equation for diffusion coefficients. Radii were determined as van der Waals values (Edward, J. T. J. Chem. Educ. 1970, 47, 261-270). Values of K were calculated from the Eigen-Fuoss equation (Eigen, M. \boldsymbol{Z}. Phys. Chem. (Frankfurt/Main) 1954, 1, 176-200. Fuoss, R. M. J. Am. Chem. Soc. 1958, 80, 5059-5061).

[^1]: (19) The following triplet energies are available: $1,2.80 \mathrm{eV}$ (Cadogan, K D.; Albrect, A. C. J. Phys. Chem. 1968, 72, 929-944. Kuzmin, V. A.; Darmanyan, A. P.; Levin, P. P. Chem. Phys. Lett. 1979, 63, 509-514); 2, 2.70 eV (Alkaitis, S. A.; Grätzel, M. J. Am. Chem. Soc. 1976, 98, 3549-3554); 4, 2.99 eV (Lim, E. C.; Chakrabarti, S. K. Chem. Phys. Lett. 1967, 1, 28-31); 5, 3.04 eV (Kuzmin, V. A.; Darmanyan, A. P.; Levin, P. P. Ibid. 1979, 63, 509-514).

[^2]: (20) See eq 9 , ref 16. Although in principle values of $\nu_{\text {et }}, \lambda$, and ΔG can all be obtained from the data, the values for quenchers 1 and 5 were not used owing to large uncertainties in k_{et} for quencher $1\left(k_{\mathrm{q}} \simeq k_{\mathrm{d}}\right)$ and $E_{1 / 2}$ for quencher 5 (see Table 1). Therefore, it was necessary to estimate ν_{et} as $10^{11}-10^{12} \mathrm{~s}^{-1}$. Values of $w_{\mathrm{p}}=-0.12 \mathrm{~V}$ and $w_{\mathrm{r}}=0.00 \mathrm{~V}$ were used to calculate $E^{\circ \prime}\left(\mathrm{Pt}_{2}(\mathrm{pop})_{4}{ }^{4-\%} / \mathrm{s}^{-}\right)$from $\Delta G .^{16}$
 (21) Milder, S. J.; Goldbeck, R. A.; Kliger, D. S.; Gray, H. B. J. Am. Chem. Soc. 1980, 102, 6761-6764.
 (22) Sutin, N.; Creutz, C. Pure Appl. Chem. 1980, 52, 2717-2738.
 (23) This value was calculated by using the Marcus cross-relation (Cannon, R. D. "Electron Transfer Reactions"; Butterworths: London, 1980; pp $205-210$) and a value of $1.0 \times 10^{9} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ for the amine self-exchange (Kowert, B. A.; Marcoux, L.; Bard, A. J. J. Am. Chem. Soc. 1972, 94, 5538-5550. Sorensen, S. P.; Bruning, W. H. Ibid. 1973, 95, 2445-2451). The cross-reaction rate constant for $\Delta G=0$ was calculated by using $\nu_{\mathrm{et}}=10^{11} \mathrm{~s}^{-1}$ and the smallest value of λ that reasonably fit the data (eq 1) in Table $I, 1.2$ V. The value of $2 \times 10^{3} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ is for $\mu=\infty$ and is decreased at finite ionic strengths. For instance, a value of $3 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ is calculated for μ $=1.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ using the Debye-Hückel correction for ionic strength effects. (24) Balzani, V.; Bolletta, F.; Gandolfi, M. T.; Maestri, M. Topics Curr. Chem. 1978, 75, 1-64. Entropy contributions are assumed to be less than 0.1 $\mathrm{eV}^{\text {s. }} 16$ Cyclic voltammetric measurements of the Pt_{2} (pop) ${ }_{4}{ }^{4}$ reduction in acetonitrile indicate that it occurs at much more negative potentials than the value of -1.4 V estimated here (Bard, A. J.; Kim, J., personal communication). Since a reversible potential has not been observed, no firm conclusions can be reached.

